मराठी

The Sum of an Infinite G.P. is 4 and the Sum of the Cubes of Its Terms is 92. the Common Ratio of the Original G.P. is - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 

पर्याय

  • (a) 1/2 

  • (b) 2/3 

  • (c) 1/3 

  • (d) −1/2 

MCQ

उत्तर

(a) 1/2 

\[\text{ Let the G . P . be a, ar }, a r^2 , a r^3 , . . . , \infty . \]
\[ S_\infty = 4\]
\[ \Rightarrow \frac{a}{1 - r} = 4 (i)\]
\[\text{ Also, sum of the cubes }, S_1 = 92\]
\[ \Rightarrow \frac{a^3}{\left( 1 - r^3 \right)} = 92 (ii)\]
\[\text{ Putting the value of a from } (i) \text{ to } (ii): \]
\[ \Rightarrow \frac{\left( 4(1 - r) \right)^3}{\left( 1 - r^3 \right)} = 92\]
\[ \Rightarrow \frac{64(1 - r )^3}{\left( 1 - r^3 \right)} = 92\]
\[ \Rightarrow \frac{\left( 1 - r \right)^3}{\left( 1 - r \right)\left( 1 + r + r^2 \right)} = \frac{92}{64}\]
\[ \Rightarrow \frac{\left( 1 - r \right)^2}{\left( 1 + r + r^2 \right)} = \frac{23}{16}\]
\[ \Rightarrow 16\left( 1 - 2r + r^2 \right) = 23\left( 1 + r + r^2 \right)\]
\[ \Rightarrow 7 r^2 + 55r + 7 = 0\]
\[\text{ Using the quadratic formula }: \]
\[ \Rightarrow r = \frac{- 55 + \sqrt{{55}^2 - 4 \times 7 \times 7}}{2 \times 7}\]
\[ \Rightarrow r = \frac{- 55 + \sqrt{{55}^2 - {14}^2}}{14}\]
\[ \Rightarrow r = \frac{- 55 + \sqrt{2829}}{14}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.8 | Q 10 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


For the G.P. if r = `1/3`, a = 9 find t7


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Express the following recurring decimal as a rational number:

`0.bar(7)`


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×