मराठी

If A, B, C Are Three Distinct Real Numbers in G.P. and a + B + C = Xb, Then Prove that Either X < −1 Or X > 3. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.

उत्तर

\[\text { Let r be the common ratio of the given G . P } . \]

\[ \therefore b = \text { ar and } c = a r^2 \]

\[\text { Now }, a + b + c = bx\]

\[ \Rightarrow a + ar + a r^2 = arx\]

\[ \Rightarrow r^2 + \left( 1 - x \right)r + 1 = 0\]

\[ \text { r is always a real number } . \]

\[ \therefore D \geq 0\]

\[ \Rightarrow \left( 1 - x \right)^2 - 4 \geq 0\]

\[ \Rightarrow x^2 - 2x - 3 \geq 0\]

\[ \Rightarrow \left( x - 3 \right)\left( x + 1 \right) \geq 0\]

\[ \Rightarrow x > 3 \text { or }x < - 1 \text { and } x \neq 3 \text { or } - 1 \left[ \because \text { a, b and c are distinct real numbers } \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.5 | Q 22 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Write the product of n geometric means between two numbers a and b

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


For the G.P. if r = `1/3`, a = 9 find t7


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


For a G.P. a = 2, r = `-2/3`, find S6


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×