Advertisements
Advertisements
प्रश्न
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
उत्तर
`2, 4/3, 8/9, 16/27, ...`
`"a" = 2, "r" = (4/3)/2 = 2/3, |"r"| < 1`
∴ Sum to infinity exists.
Sum to infinity = `"a"/(1 - "r")`
= `2/(1 - 2/3)`
= 6
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Given a G.P. with a = 729 and 7th term 64, determine S7.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Find the geometric means of the following pairs of number:
a3b and ab3
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. if a = 2, r = 3, Sn = 242 find n
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.