Advertisements
Advertisements
प्रश्न
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
उत्तर
Let a and r be the 1st term and common ratio of the G.P. respectively.
∴ Sn = `"a"(("r"^"n" - 1)/("r" - 1))`, S2n = `"a"(("r"^(2"n") - 1)/("r" - 1))`, S3n = `"a"(("r"^(3"n") - 1)/("r" - 1))`
∴ S2n – Sn = `"a"(("r"^(2"n") - 1)/("r" - 1)) - "a"(("r"^"n"- 1)/("r" - 1))`
= `"a"/("r" - 1)("r"^(2"n") - 1 - "r"^"n" + 1)`
= `"a"/("r" - 1)("r"^(2"n") - "r"^"n")`
= `"ar"^"n"/("r" - 1)("r"^"n" - 1)`
∴ S2n – Sn = `"r"^"n"*("a"("r"^"n" - 1))/("r" - 1)` ....(i)
S3n – S2n = `"a"(("r"^(3"n") - 1)/("r" - 1)) - "a"(("r"^(2"n") - 1)/("r" - 1))`
= `"a"/("r" - 1)("r"^(3"n") - 1 - "r"^(2"n") + 1)`
= `"a"/("r" - 1)("r"^(3"n") - "r"^(2"n"))`
= `"a"/("r" - 1)*"r"^(2"n")("r"^"n" - 1)`
= `"a"*(("r"^"n" - 1)/("r" - 1))*"r"^(2"n")`
∴ Sn(S3n – S2n) = `["a"*(("r"^"n"- 1)/("r" - 1))]["a"*(("r"^"n" - 1)/("r" - 1))"r"^(2"n")]`
= `["r"^"n"*("a"("r"^"n" - 1))/("r" - 1)]^2`
∴ Sn(S3n – S2n) = (S2n – Sn)2 ...[From (i)]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the rational number whose decimal expansion is \[0 . 423\].
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in G.P., then prove that:
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if r = − 3 and t6 = 1701, find a.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1