Advertisements
Advertisements
प्रश्न
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
उत्तर
\[\text { Let the 5 G . M . s betweem 16 and } \frac{1}{4} \text { be } G_1 , G_2 , G_3 , G_4 \text { and } G_5 . \]
\[16, G_1 , G_2 , G_3 , G_4 , G_5 , \frac{1}{4}\]
\[ \Rightarrow a = 16, n = 7 \text { and } a_7 = \frac{1}{4}\]
\[ \because a_7 = \frac{1}{4}\]
\[ \Rightarrow a r^6 = \frac{1}{4}\]
\[ \Rightarrow r^6 = \frac{1}{4 \times 16}\]
\[ \Rightarrow r^6 = \left( \frac{1}{2} \right)^6 \]
\[ \Rightarrow r = \frac{1}{2}\]
\[ \therefore G_1 = a_2 = ar = 16\left( \frac{1}{2} \right) = 8\]
\[ G_2 = a_3 = a r^2 = 16 \left( \frac{1}{2} \right)^2 = 4\]
\[ G_3 = a_4 = a r^3 = 16 \left( \frac{1}{2} \right)^3 = 2\]
\[ G_4 = a_5 = a r^4 = 16 \left( \frac{1}{2} \right)^4 = 1\]
\[ G_5 = a_6 = a r^5 = 16 \left( \frac{1}{2} \right)^5 = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
Find the geometric means of the following pairs of number:
−8 and −2
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
For the G.P. if a = `2/3`, t6 = 162, find r.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The sum or difference of two G.P.s, is again a G.P.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.