मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

The numbers x − 6, 2x and x2 are in G.P. Find 1st term - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The numbers x − 6, 2x and x2 are in G.P. Find 1st term

बेरीज

उत्तर

t1 = x – 6

= 10 – 6

= 4

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.1 [पृष्ठ २८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Exercise 2.1 | Q 15. (ii) | पृष्ठ २८

संबंधित प्रश्‍न

How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Find the geometric means of the following pairs of number:

−8 and −2


If logxa, ax/2 and logb x are in G.P., then write the value of x.


The fractional value of 2.357 is 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The two geometric means between the numbers 1 and 64 are 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. If t4 = 16, t9 = 512, find S10


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Express the following recurring decimal as a rational number:

`0.bar(7)`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×