Advertisements
Advertisements
प्रश्न
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
उत्तर
Here, t1 = 1, t2 = –5, t3 = 25, t4 = –125, ...
∴ `"t"_2/"t"_1 = (-5)/1` = – 5, `"t"_3/"t"_2 = 25/(-5)` = – 5, `"t"_4/"t"_3 = (-125)/25` = – 5
Since the ratio of any two consecutive terms is a constant, the given sequence is a GP.
Here, a = 1, r = – 5
∴ tn = arn–1 = 1(– 5)n–1
= (– 5)n–1
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
The fractional value of 2.357 is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t4 = 16, t9 = 512, find S10
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.