Advertisements
Advertisements
प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
उत्तर
The given G.P. is `5/2, 5/4, 5/8, ....`
Here, a = First term = `5/2`
r = Common ratio = `4/5 = 1/2`
a20 = `ar^(20 - 1) = 5/2(1/2)^19` = `5/((2)(2)^19)` = `5/(2)^20`
an = `ar^(n - 1) = 5/2(1/2)^(n - 1)` = `5/((2)(2)^(n - 1))` = `5/(2)^n`
20th term = `5/2^20`
APPEARS IN
संबंधित प्रश्न
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Express the recurring decimal 0.125125125 ... as a rational number.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., then prove that:
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
The two geometric means between the numbers 1 and 64 are
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.