Advertisements
Advertisements
प्रश्न
Express the recurring decimal 0.125125125 ... as a rational number.
उत्तर
\[\text { Let the rational number S be }0 . \overline{125} .\]
\[ \because S = 0 .\overline{ 125} = 0 . 125 + 0 . 000125 + 0 . 000000125 + 0 . 000000000125 + . . . \infty \]
\[ \Rightarrow S = 0 . 125\left[ 1 + {10}^{- 3} + {10}^{- 6} + {10}^{- 9} + . . . \infty \right]\]
\[\text { Clearly, S is a geometric series with the first term, a, being 1 and the common ratio, r, being } {10}^{- 3} . \]
\[ \therefore S = \frac{1}{\left( 1 - r \right)}\]
\[ \Rightarrow S = 0 . 125\left[ \frac{1}{1 - {10}^{- 3}} \right]\]
\[ \Rightarrow S = \frac{125}{999}\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the rational number whose decimal expansion is \[0 . 423\].
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the G.P. if a = `7/243`, r = 3 find t6.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. if S5 = 1023 , r = 4, Find a
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Express the following recurring decimal as a rational number:
`2.bar(4)`
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.