English

Express the Recurring Decimal 0.125125125 ... as a Rational Number. - Mathematics

Advertisements
Advertisements

Question

Express the recurring decimal 0.125125125 ... as a rational number.

Solution

\[\text { Let the rational number S be }0 . \overline{125} .\] 

\[ \because S = 0 .\overline{ 125} = 0 . 125 + 0 . 000125 + 0 . 000000125 + 0 . 000000000125 + . . . \infty \]

\[ \Rightarrow S = 0 . 125\left[ 1 + {10}^{- 3} + {10}^{- 6} + {10}^{- 9} + . . . \infty \right]\]

\[\text { Clearly, S is a geometric series with the first term, a, being 1 and the common ratio, r, being } {10}^{- 3} . \]

\[ \therefore S = \frac{1}{\left( 1 - r \right)}\]

\[ \Rightarrow S = 0 . 125\left[ \frac{1}{1 - {10}^{- 3}} \right]\]

\[ \Rightarrow S = \frac{125}{999}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.4 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.4 | Q 6 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("n" = 1)^oo 0.4^"n"`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The sum or difference of two G.P.s, is again a G.P.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×