Advertisements
Advertisements
Question
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Solution
0.6, 0.66, 0.666, 0.6666, …
∴ t1 = 0.6
t2 = 0.66 = 0.6 + 0.06
t3 = 0.666 = 0.6 + 0.06 + 0.006
Hence, in general
tn = 0.6 + 0.06 + 0.006 + … upto n terms.
The terms are in G.P. with
a = 0.6, r = `0.06/0.6` = 0.1
∴ tn = the sum of first n terms of the G.P.
∴ tn = `0.6[(1 - (0.1)^"n")/(1 - 0.1)] = 0.6/0.9[1 - (0.1)^"n"]`
∴ tn = `6/9[1 - (0.1)^"n"] = 2/3[1 - (0.1)^"n"]`
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find the 4th term from the end of the G.P.
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
Find the geometric means of the following pairs of number:
a3b and ab3
The fractional value of 2.357 is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. If t3 = 20 , t6 = 160 , find S7
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
The third term of G.P. is 4. The product of its first 5 terms is ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.