Advertisements
Advertisements
Question
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
Solution
k, k + 9, k−6 are in G.P.
\[\therefore \left( k - 6 \right)^2 = 4\left( k + 9 \right)\]
\[ \Rightarrow k^2 + 36 - 12k = 4k + 36\]
\[ \Rightarrow k^2 - 16k = 0\]
\[ \Rightarrow k \left( k - 16 \right) = 0\]
\[ \Rightarrow k = 0, 16\]
But, k = 0 is not possible.
∴ k = 16
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Express the recurring decimal 0.125125125 ... as a rational number.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
The fractional value of 2.357 is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. if S5 = 1023 , r = 4, Find a
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.