English

Find : the 10th Term of the G.P. √ 2 , 1 √ 2 , 1 2 √ 2 , . . . - Mathematics

Advertisements
Advertisements

Question

Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]

Solution

Here,

\[\text { First term }, a = \sqrt{2}\]

\[\text { Common ratio, } r = \frac{a_2}{a_1} = \frac{\frac{1}{\sqrt{2}}}{\sqrt{2}} = \frac{1}{2}\]

\[ \therefore 10th\text { term  }= a_{10} = a r^{(10 - 1)} = \sqrt{2} \left( \frac{1}{2} \right)^9 = \frac{1}{\sqrt{2}} \times \frac{1}{2^8}\]

\[\text { Thus, the 10th term of the given GP is } \frac{1}{\sqrt{2}} \times \frac{1}{2^8} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.1 | Q 3.6 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Evaluate `sum_(k=1)^11 (2+3^k )`


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The fractional value of 2.357 is 


The two geometric means between the numbers 1 and 64 are 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. if a = 2, r = 3, Sn = 242 find n


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×