English

The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P. - Mathematics

Advertisements
Advertisements

Question

The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.

Sum

Solution

Let a and r be the first term and the common ratio of the G.P. respectively.

∴ a = 1

a3 = ar2 = r2

a5 = ar4 = r4

∴ r2 + r4 = 90

⇒ r4 + r2 – 90 = 0

= `r^2 = (-1 + sqrt(1 + 360))/2 = (-1± sqrt361)/2 =(-1 ± 19)/(2) = -10 or 9`

∴ r = ± 3        (Taking real roots)

Thus, the common ratio of the G.P. is ±3.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Miscellaneous Exercise [Page 199]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Miscellaneous Exercise | Q 9 | Page 199

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the rational number whose decimal expansion is \[0 . 423\].


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


Find the geometric means of the following pairs of number:

a3b and ab3


Find the geometric means of the following pairs of number:

−8 and −2


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


For the G.P. if a = `7/243`, r = 3 find t6.


For the G.P. if a = `2/3`, t6 = 162, find r.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


For a G.P. a = 2, r = `-2/3`, find S6


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×