Advertisements
Advertisements
Question
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
Solution
Let A and d be the first term and common difference respectively of an A.P. and x and R be the first term and common ratio respectively of the G.P.
∴ A + (p – 1)d = a .....(i)
A + (q – 1)d = b .....(ii)
And A + (r – 1)d = c ......(iii)
For G.P., we have
xRp–1 = a .....(iv)
xRq–1 = b .....(v)
And xRr–1 = c .....(vi)
Subtracting equation (ii) from equation (i) we get
(p – q)d = a – b ......(vii)
Similarly, (q – r)d = b – c ......(viii)
And (r – p)d = c – a ......(ix)
Now we have to prove that
ab–c . bc–a . ca–b = 1
L.H.S. ab–c . bc–a . ca–b
= `[x"R"^(p - 1)]^((q - r)d) * [x"R"^(q - 1)]^((r - p)d) * [x"R"^(r - 1)]^((p - q)d)` ....[From (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix)]
= `x^((q - r)d) * "R"^((p - 1) (q - r)d) * x^((r - p)d) * "R"^((q - 1) (r - p)d) * x^((p - q)d) * "R"^((r - 1)(p - q)d)`
= `x^((q - r)d + (r - p)d) "R"^((p - 1)(q - r)d + (q - 1)(r - p)d + (r - 1)(p - q)d)`
= `x^((q-r + r - p + p - q)d) * "R"^((pq - pr - q + r + qr - pq - r + p + pr + pr - qr - p + q)d)`
= `x^((0)d) * "R"^((0)d)`
= `x^0 * "R"^0`
= 1 R.H.S.
L.H.S. = R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Find the geometric means of the following pairs of number:
a3b and ab3
For the G.P. if a = `2/3`, t6 = 162, find r.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Express the following recurring decimal as a rational number:
`0.bar(7)`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.