Advertisements
Advertisements
प्रश्न
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
उत्तर
Let A and d be the first term and common difference respectively of an A.P. and x and R be the first term and common ratio respectively of the G.P.
∴ A + (p – 1)d = a .....(i)
A + (q – 1)d = b .....(ii)
And A + (r – 1)d = c ......(iii)
For G.P., we have
xRp–1 = a .....(iv)
xRq–1 = b .....(v)
And xRr–1 = c .....(vi)
Subtracting equation (ii) from equation (i) we get
(p – q)d = a – b ......(vii)
Similarly, (q – r)d = b – c ......(viii)
And (r – p)d = c – a ......(ix)
Now we have to prove that
ab–c . bc–a . ca–b = 1
L.H.S. ab–c . bc–a . ca–b
= `[x"R"^(p - 1)]^((q - r)d) * [x"R"^(q - 1)]^((r - p)d) * [x"R"^(r - 1)]^((p - q)d)` ....[From (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix)]
= `x^((q - r)d) * "R"^((p - 1) (q - r)d) * x^((r - p)d) * "R"^((q - 1) (r - p)d) * x^((p - q)d) * "R"^((r - 1)(p - q)d)`
= `x^((q - r)d + (r - p)d) "R"^((p - 1)(q - r)d + (q - 1)(r - p)d + (r - 1)(p - q)d)`
= `x^((q-r + r - p + p - q)d) * "R"^((pq - pr - q + r + qr - pq - r + p + pr + pr - qr - p + q)d)`
= `x^((0)d) * "R"^((0)d)`
= `x^0 * "R"^0`
= 1 R.H.S.
L.H.S. = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c