Advertisements
Advertisements
प्रश्न
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
उत्तर
\[\text { Here, } a_p = a + \left( p - 1 \right)d\]
\[ a_q = a + \left( q - 1 \right)d\]
\[ a_r = a + \left( r - 1 \right)d\]
\[ a_s = a + \left( s - 1 \right)d\]
\[\text { It is given that }a_p , a_q , a_r \text { and } a_s\text { are in G . P } . \]
\[ \therefore \frac{a_q}{a_p} = \frac{a_r}{a_q} = \frac{a_q - a_r}{a_p - a_q} = \frac{q - r}{p - q} . . . . . . . (i)\]
\[\text { Similarly }, \frac{a_r}{a_q} = \frac{a_s}{a_r} = \frac{a_r - a_s}{a_q - a_r} = \frac{r - s}{q - r} . . . . . . . (ii)\]
\[\text { Using }\left( i \right) \text { and }\left( ii \right): \]
\[\frac{q - r}{p - q} = \frac{r - s}{q - r}, \]
\[\text { Therefore }, p - q, q - r\text { and } r - s \text { are in G . P } .\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
Find the geometric means of the following pairs of number:
2 and 8
The fractional value of 2.357 is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
The third term of a G.P. is 4, the product of the first five terms is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.