Advertisements
Advertisements
प्रश्न
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
उत्तर
Here,
\[\frac{1}{a + b}, \frac{1}{2b} \text { and } \frac{1}{b + c} \text { are in A . P } . \]
\[\therefore 2 \times \frac{1}{2b} = \frac{1}{a + b} + \frac{1}{b + c}\]
\[ \Rightarrow \frac{1}{b} = \frac{b + c + a + b}{\left( a + b \right)\left( b + c \right)}\]
\[ \Rightarrow \left( a + b \right)\left( b + c \right) = b\left( 2b + a + c \right)\]
\[ \Rightarrow ab + ac + b^2 + bc = 2 b^2 + ab + bc\]
\[ \Rightarrow 2 b^2 - b^2 = ac\]
\[ \Rightarrow b^2 = ac\]
\[\text { Thus, a, b and c are in G . P } .\]
APPEARS IN
संबंधित प्रश्न
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
Write the product of n geometric means between two numbers a and b.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
For the G.P. if a = `7/243`, r = 3 find t6.
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.