मराठी

If 1 a + B , 1 2 B , 1 B + C Are Three Consecutive Terms of an A.P., Prove that A, B, C Are the Three Consecutive Terms of a G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.

उत्तर

Here,

\[\frac{1}{a + b}, \frac{1}{2b} \text { and } \frac{1}{b + c} \text { are in A . P } . \]

\[\therefore 2 \times \frac{1}{2b} = \frac{1}{a + b} + \frac{1}{b + c}\]

\[ \Rightarrow \frac{1}{b} = \frac{b + c + a + b}{\left( a + b \right)\left( b + c \right)}\]

\[ \Rightarrow \left( a + b \right)\left( b + c \right) = b\left( 2b + a + c \right)\]

\[ \Rightarrow ab + ac + b^2 + bc = 2 b^2 + ab + bc\]

\[ \Rightarrow 2 b^2 - b^2 = ac\]

\[ \Rightarrow b^2 = ac\]

\[\text { Thus, a, b and c are in G . P } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.5 | Q 17 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If logxa, ax/2 and logb x are in G.P., then write the value of x.


Write the product of n geometric means between two numbers a and b

 


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


For the G.P. if a = `7/243`, r = 3 find t6.


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For a G.P. If t4 = 16, t9 = 512, find S10


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×