Advertisements
Advertisements
Question
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Solution
Here,
\[\frac{1}{a + b}, \frac{1}{2b} \text { and } \frac{1}{b + c} \text { are in A . P } . \]
\[\therefore 2 \times \frac{1}{2b} = \frac{1}{a + b} + \frac{1}{b + c}\]
\[ \Rightarrow \frac{1}{b} = \frac{b + c + a + b}{\left( a + b \right)\left( b + c \right)}\]
\[ \Rightarrow \left( a + b \right)\left( b + c \right) = b\left( 2b + a + c \right)\]
\[ \Rightarrow ab + ac + b^2 + bc = 2 b^2 + ab + bc\]
\[ \Rightarrow 2 b^2 - b^2 = ac\]
\[ \Rightarrow b^2 = ac\]
\[\text { Thus, a, b and c are in G . P } .\]
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find the 4th term from the end of the G.P.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Write the product of n geometric means between two numbers a and b.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
For the G.P. if r = − 3 and t6 = 1701, find a.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.