English

Write the Product of N Geometric Means Between Two Numbers a and B. - Mathematics

Advertisements
Advertisements

Question

Write the product of n geometric means between two numbers a and b

 

Solution

\[\text{ Let G_1 , G_2 , . . . , G_n be n geometric means between two quantities a and b } . \]
\[\text{ Thus, a, G_1 , G_2 , . . . , G_n , b is a G . P } . \]
\[\text{ Let r be the common ratio of this G . P } . \]
\[ \therefore r = \left( \frac{b}{a} \right)^\frac{1}{n + 1} \]
\[\text{ And }, G_1 = ar, G_2 = a r^2 , G_3 = a r^3 , . . . , G_n = a r^n \]
\[\text{ Now, product of n geometric means } = G_1 \cdot G_2 \cdot G_3 \cdot . . . \cdot G_n = \left( ar \right)\left( a r^2 \right)\left( a r^3 \right) . . . \left( a r^n \right)\]
\[ = \left( ar \right)\left( a r^2 \right)\left( a r^3 \right) . . . . . . \left( a r^n \right) \]
\[ = a^n r^{1 + 2 + 3 + . . . + n} \]
\[ = a^n r^\frac{n\left( n + 1 \right)}{2} \]
\[ = a^n \left\{ \left( \frac{b}{a} \right)^\frac{1}{n + 1} \right\}^\frac{n\left( n + 1 \right)}{2} \]
\[ = a^n \left( \frac{b}{a} \right)^\frac{n}{2} \]
\[ = a^\frac{n}{2} b^\frac{n}{2} \]
\[ = \left( ab \right)^\frac{n}{2} \]
\[ \]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.7 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.7 | Q 9 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The fractional value of 2.357 is 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


For the G.P. if r = `1/3`, a = 9 find t7


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers x − 6, 2x and x2 are in G.P. Find x


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×