English

The Sum of N Terms of the G.P. 3, 6, 12, ... is 381. Find the Value of N. - Mathematics

Advertisements
Advertisements

Question

The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.

Solution

Here, a = 3
Common ratio,r = 3
Sum of n terms, Sn = 381
∴ Sn = 3 + 6 + 12 + ... + n terms

\[\Rightarrow 381 = 3\left( \frac{2^n - 1}{2 - 1} \right) \]

\[ \Rightarrow 381 = 3 \left( 2^n - 1 \right)\]

\[ \Rightarrow 127 = 2^n - 1\]

\[ \Rightarrow 2^n = 128 \]

\[ \Rightarrow 2^n = 2^7 \]

\[ \therefore n = 7\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 8 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the G.P. if a = `7/243`, r = 3 find t6.


For the G.P. if a = `2/3`, t6 = 162, find r.


Which term of the G.P. 5, 25, 125, 625, … is 510?


The numbers 3, x, and x + 6 form are in G.P. Find x


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×