Advertisements
Advertisements
Question
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Solution
tn = `(5^("n" - 2))/(7^("n" - 3)) = (5.5^("n" - 3))/(7^("n" - 3))`
∴ tn = `5(5/7)^("n" - 3)`
∴ tn+1 = `5(5/7)^("n" + 1 - 3)`
= `5(5/7)^("n" - 2)`
∴ `("t"_("n" + 1))/"t"_"n" = (5(5/7)^("n" - 2))/(5(5/7)^("n" - 3))`
= `(5/7)^("n" - 2 - "n" + 3)`
= `5/7`, which is a constant
∴ the sequence is a G.P. whose common ratio is `5/7`
Now, tn = `5(5/7)^("n" - 3)`
∴ the first term = t1 = `5(5/7)^(1 - 3)`
= `5(5/7)^(-2)`
= `5(7/5)^2`
= `49/5`
APPEARS IN
RELATED QUESTIONS
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Which term of the G.P. 5, 25, 125, 625, … is 510?
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For a G.P. If t4 = 16, t9 = 512, find S10
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.