English

Answer the following: For a sequence , if tn = 5n-27n-3, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio. - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.

Sum

Solution

tn = `(5^("n" - 2))/(7^("n" - 3)) = (5.5^("n" - 3))/(7^("n" - 3))`

∴ tn = `5(5/7)^("n" - 3)`

∴ tn+1 = `5(5/7)^("n" + 1 - 3)`

= `5(5/7)^("n" - 2)`

∴ `("t"_("n" + 1))/"t"_"n" = (5(5/7)^("n" - 2))/(5(5/7)^("n" - 3))`

= `(5/7)^("n" - 2 - "n" + 3)`

= `5/7`, which is a constant

∴  the sequence is a G.P. whose common ratio is `5/7`

Now, tn = `5(5/7)^("n" - 3)`

∴ the first term = t1 = `5(5/7)^(1 - 3)`

= `5(5/7)^(-2)`

= `5(7/5)^2`

= `49/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Miscellaneous Exercise 2.2 [Page 41]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (4) | Page 41

RELATED QUESTIONS

Given a G.P. with a = 729 and 7th term 64, determine S7.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Which term of the G.P. 5, 25, 125, 625, … is 510?


The numbers 3, x, and x + 6 form are in G.P. Find x


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


For a G.P. If t4 = 16, t9 = 512, find S10


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×