Advertisements
Advertisements
Question
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Solution
Let the terms of the G.P be \[\frac{a}{r},\text { a and ar .}\]
∴ Product of the G.P. = 1
\[\Rightarrow a^3 = 1\]
\[ \Rightarrow a = 1\]
Now, sum of the G.P. = \[\frac{39}{10}\]
\[\Rightarrow \frac{a}{r} + a + ar = \frac{39}{10}\]
\[ \Rightarrow a\left( \frac{1}{r} + 1 + r \right) = \frac{39}{10}\]
\[ \Rightarrow 1\left( \frac{1}{r} + 1 + r \right) = \frac{39}{10}\]
\[ \Rightarrow 10 r^2 + 10r + 10 = 39r\]
\[ \Rightarrow 10 r^2 - 29r + 10 = 0\]
\[ \Rightarrow 10 r^2 - 25r - 4r + 10 = 0\]
\[ \Rightarrow 5r(2r - 5) - 2(2r - 5) = 0\]
\[ \Rightarrow \left( 5r - 2 \right)\left( 2r - 5 \right) = 0\]
\[ \Rightarrow r = \frac{2}{5}, \frac{5}{2}\]
Hence, putting the values of a and r , the required numbers are \[\frac{5}{2}, 1, \frac{2}{5} \text { or } \frac{2}{5}, 1 \text { and }\frac{5}{2}\].
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
The fractional value of 2.357 is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if r = `1/3`, a = 9 find t7
The numbers 3, x, and x + 6 form are in G.P. Find x
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. If t3 = 20 , t6 = 160 , find S7
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
The third term of G.P. is 4. The product of its first 5 terms is ______.