Advertisements
Advertisements
Question
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Solution
Let the geometric series be a common ratio.
First term = a, nth term = ar n – 1 = b
P = product of n terms
= a. ar. ar2. ar3 …. arn – 1
= `"a"^"n". "r"^ (1+ 2 + 3 + ... +("n" - 1))`
= `"a"^"n""r"^(("n"("n" - 1))/2)`
p2 = `"a"^(2"n") "r"^("n"("n" - 1))` ..........(i)
(ab)n = `("a" xx "ar"^("n" - 1))^"n"`
= `("a"^2 xx "r"^("n" - 1))^"n"`
= `"a"^(2"n"). "r"^("n"("n" - 1))` ..........(ii)
From equations (i) and (ii),
P2 = (ab)n
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
Find the geometric means of the following pairs of number:
2 and 8
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.