English

If a+bxa-bx=b+cxb-cx=c+dxc-dx(x≠0) then show that a, b, c and d are in G.P. - Mathematics

Advertisements
Advertisements

Question

if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.

Sum

Solution

We know that if `"a"/"b" = "c"/"d"` then `("a" + "b")/("a" - "b") = ("c" + " d")/("c" - "d")`

According to this rule, if `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "cx")/("c" - "cx")`

So, `(("a" + "bx") + ("a" - "bx"))/(("a" + "bx") - ("a" - "bx")) = ((" b" + "cx") + ("b" - "cx"))/(("b" + "cx") - ("b" - "cx"))`

= `(("c" + "dx") + ("c" - "dx"))/(("c" + "dx") - ("c" - "dx"))`

`(2"a")/(2"bx") = (2"b")/(2"cx") = (2"c")/(2"dx")`

or `"a"/"b" = "b"/"c" = "c"/"d"`

Hence a, b, c, d are in geometric progression.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Miscellaneous Exercise [Page 199]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Miscellaneous Exercise | Q 13 | Page 199

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Find the geometric means of the following pairs of number:

2 and 8


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The numbers 3, x, and x + 6 form are in G.P. Find x


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. If t3 = 20 , t6 = 160 , find S7


For a G.P. If t4 = 16, t9 = 512, find S10


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Express the following recurring decimal as a rational number:

`2.3bar(5)`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×