Advertisements
Advertisements
Question
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Solution
We know that if `"a"/"b" = "c"/"d"` then `("a" + "b")/("a" - "b") = ("c" + " d")/("c" - "d")`
According to this rule, if `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "cx")/("c" - "cx")`
So, `(("a" + "bx") + ("a" - "bx"))/(("a" + "bx") - ("a" - "bx")) = ((" b" + "cx") + ("b" - "cx"))/(("b" + "cx") - ("b" - "cx"))`
= `(("c" + "dx") + ("c" - "dx"))/(("c" + "dx") - ("c" - "dx"))`
`(2"a")/(2"bx") = (2"b")/(2"cx") = (2"c")/(2"dx")`
or `"a"/"b" = "b"/"c" = "c"/"d"`
Hence a, b, c, d are in geometric progression.
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Find the geometric means of the following pairs of number:
2 and 8
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. If t3 = 20 , t6 = 160 , find S7
For a G.P. If t4 = 16, t9 = 512, find S10
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Express the following recurring decimal as a rational number:
`2.3bar(5)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.