Advertisements
Advertisements
Question
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Solution
Let the geometric progression be a + ar + ar2 +….. + arn – 1
The product of these n terms, P = a. ar . ar2….. arn – 1
= `"a"^"n". "r"^(1 + 2 + ...... + ("n" - 1))`
= `"a"^"n""r" ("n" ("n" - 1))/2`
∴ `"P"^2 = "a"^(2"n"). "r"("n"("n" - 1))`
R = `1/"a" + 1/"ar" + 1/"ar"^2 + ....... + 1/"ar"^("n" - 1)`
= `(1/"a" [(1/"r")^"n" - 1])/1/"r" -1`
= `((1 - "r"^"n")"r")/("ar"^"n"(1 - "r"))`
∴ Rn = `((1 - "r"^"n")^"n")/(("a"^"n" "r"^"n"("n" - 1))(1 - "r")^"n")`
Left Side: P2 Rn = `"a"^(2"n") "r"^("n" ("n" -1)) ((1 - "r"^"n")^"n")/(("a"^"n""r"^("n"("n" - 1))(1 - "r")^"n"))`
= `("a"^"n"(1 - "r"^"n")^"n")/((1 - "r")"n") = "S"^"n"`
Whereas S = a + ar + ar2 + .... + arn - 1
= `("a"(1 - "r"^"n"))/(1 - "r")`
Hence, P2Rn = Sn
APPEARS IN
RELATED QUESTIONS
Given a G.P. with a = 729 and 7th term 64, determine S7.
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
The third term of G.P. is 4. The product of its first 5 terms is ______.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.