Advertisements
Advertisements
Question
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
Solution
Let the two numbers be a and b .
Let the geometric mean between them be G .
We have:
a + b = 6G
\[\text { But }, G = \sqrt{ab}\]
\[ \therefore a + b = 6\sqrt{ab}\]
\[ \Rightarrow \left( a + b \right)^2 = \left( 6\sqrt{ab} \right)^2 \]
\[ \Rightarrow a^2 + 2ab + b^2 = 36ab\]
\[ \Rightarrow a^2 - 34ab + b^2 = 0\]
\[\text { Using the quadratic formula: } \]
\[ \Rightarrow a = \frac{- \left( - 34b \right) \pm \sqrt{\left( - 34b \right)^2 - 4 \times 1 \times b^2}}{2 \times 1}\]
\[ \Rightarrow a = \frac{34b \pm b\sqrt{1156 - 4}}{2}\]
\[ \Rightarrow a = \frac{b\left( 34 \pm \sqrt{1152} \right)}{2}\]
\[ \Rightarrow \frac{a}{b} = \frac{34 \pm 24\sqrt{2}}{2}\]
\[ \Rightarrow \frac{a}{b} = 17 + 12\sqrt{2} \left[ \because \text { a and b are positive numbers } \right]\]
\[ \Rightarrow \frac{a}{b} = 3 + 8 + 2 \times 3 \times 2\sqrt{2}\]
\[ \Rightarrow \frac{a}{b} = \left( 3 + 2\sqrt{2} \right)^2 \]
\[ \Rightarrow \frac{a}{b} = \frac{\left( 3 + 2\sqrt{2} \right)^2 \left( 3 - 2\sqrt{2} \right)}{\left( 3 - 2\sqrt{2} \right)}\]
\[ \Rightarrow \frac{a}{b} = \frac{\left( 3 + 2\sqrt{2} \right)\left( 9 - 8 \right)}{\left( 3 - 2\sqrt{2} \right)}\]
\[ \Rightarrow \frac{a}{b} = \frac{\left( 3 + 2\sqrt{2} \right)}{\left( 3 - 2\sqrt{2} \right)}\]
\[ \Rightarrow a: b = \left( 3 + 2\sqrt{2} \right): \left( 3 - 2\sqrt{2} \right)\]
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The numbers 3, x, and x + 6 form are in G.P. Find x
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
The numbers x − 6, 2x and x2 are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.