English

A G.P. Consists of an Even Number of Terms. If the Sum of All the Terms is 5 Times the Sum of the Terms Occupying the Odd Places. Find the Common Ratio of the G.P. - Mathematics

Advertisements
Advertisements

Question

A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.

Solution

Let there be 2n terms in the given G.P. with the first term being a and the common ratio being r.
According to the question
Sum of all the terms = 5 (Sum of the terms occupying the odd places)

\[\Rightarrow a_1 + a_2 + . . . + a_{2n} = 5 \left( a_1 + a_3 + a_5 + . . . + a_{2n - 1} \right)\]

\[ \Rightarrow a + ar + . . . + a r^{2n - 1} = 5 \left( a + a r^2 + . . . + a r^{2n - 2} \right)\]

\[ \Rightarrow a\left( \frac{1 - r^{2n}}{1 - r} \right) = 5a\left\{ \frac{1 - \left( r^2 \right)^n}{1 - r^2} \right\} \]

\[ \Rightarrow 1 + r = 5 \]

\[ \therefore r = 4\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 20 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


The numbers 3, x, and x + 6 form are in G.P. Find x


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. If t3 = 20 , t6 = 160 , find S7


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×