Advertisements
Advertisements
Question
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Solution
We have,
\[ a_1 = a , a_2 = \frac{3 a^2}{4}, a_3 = \frac{9 a^3}{16}\]
\[\text { Now, } \frac{a_2}{a_1} = \frac{\frac{3 a^2}{4}}{a} = \frac{3a}{4}, \frac{a_3}{a_2} = \frac{\frac{9 a^3}{16}}{\frac{3 a^2}{4}} = \frac{3a}{4} \]
\[ \therefore \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{3a}{4}\]
\[\text { Thus, } a_1 , a_2 \text { and } a_3 \text { are in G . P . , where the first term is a and the common ratio is } \frac{3a}{4} .\]
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find the 4th term from the end of the G.P.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Express the recurring decimal 0.125125125 ... as a rational number.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
For the G.P. if a = `2/3`, t6 = 162, find r.
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For a G.P. If t4 = 16, t9 = 512, find S10
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum or difference of two G.P.s, is again a G.P.