English

Show that One of the Following Progression is a G.P. Also, Find the Common Ratio in Case: −2/3, −6, −54, ... - Mathematics

Advertisements
Advertisements

Question

Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...

Solution

We have, 

\[ a_1 = \frac{- 2}{3} , a_2 = - 6, a_3 = - 54\]

\[\text { Now }, \frac{a_2}{a_1} = \frac{- 6}{\frac{- 2}{3}} = 9, \frac{a_3}{a_2} = \frac{- 54}{- 6} = 9 \]

\[ \therefore \frac{a_2}{a_1} = \frac{a_3}{a_2} = 9\]

\[\text { Thus, } a_1 , a_2 \text { and } a_3 \text { are in G . P . , where } a = \frac{- 2}{3}\text {  and } r = 9 .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.1 | Q 1.2 | Page 9

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


The numbers x − 6, 2x and x2 are in G.P. Find x


For a G.P. if S5 = 1023 , r = 4, Find a


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


The sum or difference of two G.P.s, is again a G.P.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×