Advertisements
Advertisements
Question
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Solution
Given:
\[ S_1 , S_2 , . . . , S_n\text { are the sum of n terms of an G . P . whose first term is 1 in each case and the common ratios are } 1, 2, 3, . . . , n . \]
\[ \therefore S_1 = 1 + 1 + 1 + . . .\text { n terms } = n . . . \left( 1 \right)\]
\[ S_2 = \frac{1\left( 2^n - 1 \right)}{2 - 1} = 2^n - 1 . . . \left( 2 \right)\]
\[ S_3 = \frac{1\left( 3^n - 1 \right)}{3 - 1} = \frac{3^n - 1}{2} . . . \left( 3 \right)\]
\[ S_4 = \frac{1\left( 4^n - 1 \right)}{4 - 1} = \frac{4^n - 1}{3} . . . \left( 4 \right)\]
\[ S_n = \frac{1\left( n^n - 1 \right)}{n - 1} = \frac{n^n - 1}{n - 1} . . . . . . . . . . . . \left( n \right)\]
\[\text { Now, LHS } = S_1 + S_2 + 2 S_3 + 3 S_4 + . . . + \left( n - 1 \right) S_n \]
\[ = n + 2^n - 1 + 3^n - 1 + 4^n - 1 + . . . + n^n - 1 \left[ \text { Using } \left( 1 \right), \left( 2 \right), \left( 3 \right), . . . , \left( n \right) \right]\]
\[ = n + \left( 2^n + 3^n + 4^n + . . . + n^n \right) - \left[ 1 + 1 + 1 + . . . + \left( n - 1 \right) \text { times } \right]\]
\[ = n + \left( 2^n + 3^n + 4^n + . . . + n^n \right) - \left( n - 1 \right)\]
\[ = n + \left( 2^n + 3^n + 4^n + . . . + n^n \right) - n + 1\]
\[ = 1 + 2^n + 3^n + 4^n + . . . + n^n \]
\[ = 1^n + 2^n + 3^n + 4^n + . . . + n^n \]
= RHS
Hence proved .
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
Write the product of n geometric means between two numbers a and b.
The fractional value of 2.357 is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
For the G.P. if a = `2/3`, t6 = 162, find r.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.