Advertisements
Advertisements
Question
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
Solution
a, b, c and d are in G.P.
\[\therefore b^2 = ac\]
\[ad = bc \]
\[ c^2 = bd\] .......(1)
\[\left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{b^2} \right)^2 + \frac{2}{b^2 c^2} + \left( \frac{1}{c^2} \right)^2 \]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{ac} \right)^2 + \frac{1}{b^2 c^2} + \frac{1}{b^2 c^2} + \left( \frac{1}{bd} \right)^2 \left[ \text { Using } (1) \right]\]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \frac{1}{a^2 c^2} + \frac{1}{a^2 d^2} + \frac{1}{b^2 c^2} + \frac{1}{b^2 d^2} \left[ \text { Using }(1) \right]\]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \frac{1}{a^2}\left( \frac{1}{c^2} + \frac{1}{d^2} \right) + \frac{1}{b^2}\left( \frac{1}{c^2} + \frac{1}{d^2} \right)\]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{a^2 + b^2} \right)\left( \frac{1}{c^2} + \frac{1}{d^2} \right)\]
\[\text{ Therefore }, \left( \frac{1}{b^2 + c^2} \right), \left( \frac{1}{c^2 + d^2} \right)\text { and } \left( \frac{1}{b^2 + c^2} \right) \text { are also in G . P } .\]
APPEARS IN
RELATED QUESTIONS
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if r = − 3 and t6 = 1701, find a.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
The numbers x − 6, 2x and x2 are in G.P. Find x
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
The sum or difference of two G.P.s, is again a G.P.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.