English

Given that X > 0, the Sum ∞ ∑ N = 1 ( X X + 1 ) N − 1 Equals - Mathematics

Advertisements
Advertisements

Question

Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 

Options

  • (a) 

  • (b) x + 1 

  • (c) \[\frac{x}{2x + 1}\] 

  • (d) \[\frac{x + 1}{2x + 1}\] 

MCQ

Solution

(b) x + 1 

\[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^\left( n - 1 \right) = 1 + \left( \frac{x}{x + 1} \right) + \left( \frac{x}{x + 1} \right)^2 + \left( \frac{x}{x + 1} \right)^3 + \left( \frac{x}{x + 1} \right)^4 + . . . \infty \]
\[ = \frac{1}{1 - \left( \frac{x}{x + 1} \right)} \left[ \because \text{ it is a G . P } . \text{ with a = 1 and } r = \left( \frac{x}{x + 1} \right) \right]\]
\[ = \frac{\left( x + 1 \right)}{\left( x + 1 - x \right)}\]
\[ = \frac{\left( x + 1 \right)}{1} = \left( x + 1 \right)\]
\[\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.8 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.8 | Q 19 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Evaluate `sum_(k=1)^11 (2+3^k )`


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


The two geometric means between the numbers 1 and 64 are 


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


The third term of G.P. is 4. The product of its first 5 terms is ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×