Advertisements
Advertisements
Question
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Solution
Here, a = 0.15 and r \[= \frac{a_2}{a_1} = \frac{0 . 015}{0 . 15} = \frac{1}{10}\] .
\[S_8 = a\left( \frac{1 - r^8}{1 - r} \right) \]
\[ = 0 . 15\left( \frac{1 - \left( \frac{1}{10} \right)^8}{1 - \frac{1}{10}} \right)\]
\[ = 0 . 15\left( \frac{1 - \frac{1}{{10}^8}}{\frac{1}{10}} \right)\]
\[ = \frac{1}{6}\left( 1 - \frac{1}{{10}^8} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
Which term of the G.P. 5, 25, 125, 625, … is 510?
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.