English

Find Three Numbers in G.P. Whose Product is 729 and the Sum of Their Products in Pairs is 819. - Mathematics

Advertisements
Advertisements

Question

Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.

Solution

Let the required numbers be \[\frac{a}{r}, \text { a and ar } .\]

Product of the G.P. = 729

\[\Rightarrow a^3 = 729\]

\[ \Rightarrow a = 9\]

Sum of the products in pairs = 819

\[\Rightarrow \frac{a}{r} \times a + a \times ar + ar \times \frac{a}{r} = 819\]

\[ \Rightarrow a^2 \left( \frac{1}{r} + r + 1 \right) = 819\]

\[ \Rightarrow 81\left( \frac{1 + r^2 + r}{r} \right) = 819\]

\[ \Rightarrow 9\left( r^2 + r + 1 \right) = 91r\]

\[ \Rightarrow 9 r^2 - 82r + 9 = 0\]

\[ \Rightarrow 9 r^2 - 81r - r + 9 = 0\]

\[ \Rightarrow \left( 9r - 1 \right)\left( r - 9 \right) = 0\]

\[ \Rightarrow r = \frac{1}{9}, 9\]

\[\text { Hence, putting the values of a and r, we get the numbers to be 81, 9 and 1 or 1, 9 and 81 } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.2 | Q 8 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Given a G.P. with a = 729 and 7th term 64, determine S7.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


For the G.P. if a = `7/243`, r = 3 find t6.


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


The third term of G.P. is 4. The product of its first 5 terms is ______.


The sum or difference of two G.P.s, is again a G.P.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×