English

Given a G.P. with a = 729 and 7th term 64, determine S7. - Mathematics

Advertisements
Advertisements

Question

Given a G.P. with a = 729 and 7th term 64, determine S7.

Sum

Solution

गुणोत्तर श्रेणी का पहला पद, a = 729

मान लीजिए सार्व अनुपात = r

∴ 7वाँ पद = ar7-1 = ar6

729 r6 = 64

⇒ r6 = `64/729 = (2/3)^6`

∴ r = `2/3`

अब S7 = `("a"(1 - "r"^"n"))/(1 - "r")`

= `(729[1 - (2/3)^7])/(1 - 2/3)`

= `729 xx 3 xx [(2187 - 128)/2187]`

= `(729 xx 3)/2187 (2059)`

= 2059

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise 9.3 [Page 192]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise 9.3 | Q 15 | Page 192

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Express the recurring decimal 0.125125125 ... as a rational number.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Find the geometric means of the following pairs of number:

2 and 8


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×