Advertisements
Advertisements
Question
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Solution
\[\text { Let the given series be }a_1 + a_2 + a_3 + a_4 + . . . + a_{2n} . \]
\[\text { Now, it is given that }a_1 = 1, a_2 = a a_1 , a_3 = c a_2 , a_4 = a a_3 , a_5 = c a_4 \text { and so on } . \]
\[ \because a_1 = 1\]
\[ \Rightarrow a_1 = 1, a_2 = a, a_3 = ac, a_4 = a^2 c, a_5 = a^2 c^{2,} a_6 = a^3 c^2 , . . . . . \]
\[ \therefore\text { Sum of the 2n terms of the series }, \]
\[ S_n = a_1 + a_2 + a_3 + a_4 + . . . + a_{2n} \]
\[ = 1 + a + ac + a^2 c + a^2 c^2 + . . . + 2n \text { terms }\]
\[ = \left( 1 + a \right) + ac\left( 1 + a \right) + a^2 c^2 \left( 1 + a \right) + . . . + \text { n terms }\]
\[ = \left( 1 + a \right)\left\{ \frac{1 - \left( ac \right)^n}{1 - ac} \right\} \]
\[ = \left( 1 + a \right) \left\{ \frac{\left( ac \right)^n - 1}{ac - 1} \right\}\]
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., then prove that:
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
The two geometric means between the numbers 1 and 64 are
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.