Advertisements
Advertisements
Question
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Solution
\[0 . \overline {231 }\]
\[\text { Let } S = 0 . \overline {231 }\]
\[ \Rightarrow S = 0 . 231 + 0 . 000231 + 0 . 000000231 + . . . \infty \]
\[ \Rightarrow S = 0 . 231\left( 1 + {10}^{- 3} + {10}^{- 6} + . . . \infty \right)\]
\[\text { It is a G . P } . \]
\[ \therefore S = 0 . 231\left( \frac{1}{1 - {10}^{- 3}} \right)\]
\[ \Rightarrow S = \frac{231}{999}\]
APPEARS IN
RELATED QUESTIONS
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find the rational number whose decimal expansion is \[0 . 423\].
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
Write the product of n geometric means between two numbers a and b.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The two geometric means between the numbers 1 and 64 are
For the G.P. if r = − 3 and t6 = 1701, find a.
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
The numbers x − 6, 2x and x2 are in G.P. Find x
For a G.P. if S5 = 1023 , r = 4, Find a
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.