English

Express the following recurring decimal as a rational number: 2.35¯ - Mathematics and Statistics

Advertisements
Advertisements

Question

Express the following recurring decimal as a rational number:

`2.3bar(5)`

Sum

Solution

`2.3bar(5)` = 2.3555 ...

= 2.3 + 0.05 + 0.005 + 0.0005 + …

The terms 0.05, 0.005, 0.0005 are in G.P.

∴ a = 0.05, r = `0.005/0.05` = 0.1

Since |r| = |0.1| < 1

∴ Sum to infinity exists.

∴ Sum to infinity = `2.3 + "a"/(1 - "r")`

= `2.3 + 0.05/(1 - 0.1)`

= `2.3 + 0.05/0.9`

= `23/10 + 5/90`

= `212/90`

= `106/45`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.3 [Page 33]

APPEARS IN

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


The two geometric means between the numbers 1 and 64 are 


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


For a G.P. If t3 = 20 , t6 = 160 , find S7


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


The sum or difference of two G.P.s, is again a G.P.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×