Advertisements
Advertisements
Question
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
Solution
\[\left( a - b \right), \left( b - c \right) \text { and }\left( c - a \right) \text { are in G . P} . \]
\[ \therefore \left( b - c \right)^2 = \left( a - b \right)\left( c - a \right)\]
\[ \Rightarrow b^2 - 2bc + c^2 = ac - bc + ab - a^2 \]
\[ \Rightarrow a^2 + b^2 + c^2 = ab + bc + ca . . . . . . . (i)\]
\[\text{ Now, LHS } = \left( a + b + c \right)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca\]
\[ = ab + bc + ca + 2ab + 2bc + 2ca \left[\text { Using }(i) \right]\]
\[ = 3ab + 3bc + 3ca\]
\[ = 3\left( ab + bc + ca \right)\]
\[ = \text { RHS }\]
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
Find the geometric means of the following pairs of number:
−8 and −2
If logxa, ax/2 and logb x are in G.P., then write the value of x.
Write the product of n geometric means between two numbers a and b.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The fractional value of 2.357 is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For a G.P. If t3 = 20 , t6 = 160 , find S7
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.