English

Find the sum to n terms of the sequence, 8, 88, 888, 8888… . - Mathematics

Advertisements
Advertisements

Question

Find the sum to n terms of the sequence, 8, 88, 888, 8888… .

Sum

Solution

Let S = 8 + 88 + 888 + ..… up to terms

= 8 [1 + 11 + 111 + ….. up to n terms]

= `8/9[9 + 99 + 999 + .... "up to terms"]`

= `8/9[(10 - 1) + (100 - 1) + (1000 - 1) + ...... "up to n terms"]`

= `8/9[(10 + 100 + 1000 + ....... "up to n terms" - "n")]`

= `8/9[(10(10^"n" - 1))/(10 - 1) - "n"]` ......... `[∵ "s" = ("a" ("r"^"n" - 1))/("r" - 1), "a" = 10, "r" = 10]`

= `8/9 [(10(10^"n" - 1))/9 - "n"]`

= `80/81(10^"n" - 1) - 8/9 "n"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise 9.3 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise 9.3 | Q 18 | Page 193

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×