English

If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that aq-rbr-pcp-q=1 - Mathematics

Advertisements
Advertisements

Question

If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`

Sum

Solution

Let the first term of the geometric progression be A and the common ratio be R.

pth term = ARp – 1 = a    .....(i)

qth term = ARq – 1 = b    .....(ii)

rth term = ARr – 1 = c    .....(iii)

Using q – r of equation (i), r – p of equation (ii), p – q power of equation (iii),

aq−r. br−p. cp−q  = (ARp−1)q −r. (ARq−1)r−p. (ARr−1)p−q

= `"A"^("q" - "r" + "r" - "p" + "p" - "q") "R"^(("p" - 1) ("q" - "r") + ("q" - 1) ("r" - "p") + ("r" - 1) ("p" - "q"))`

= `"A"^0. "R"^("p" ("q" - "r") - 1 ("q" - "r") + q ("r" - "p") - 1("r" - "p") + r ("p" - "q") - 1("p" - "q"))`

= `"R"^("pq" - "pr" - "q" + "r" + "qr"- "pq" - "r" + "p" + "rp" - "rp" - "p "+ "q")`

= R0 

= 1

Thus, the given result is proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise 9.3 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise 9.3 | Q 22 | Page 193

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Express the recurring decimal 0.125125125 ... as a rational number.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×