Advertisements
Advertisements
Question
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Solution
`sum_("r" = 1)^"n" (2/3)^"r" = 2/3 + (2/3)^2 + (2/3)^3 + ... + (2/3)^"n"`
The terms `2/3, (2/3)^2, (2/3)^3` are in G.P.
∴ a = `2/3`, r = `2/3`
∴ `sum_("r" = 1)^"n" (2/3)^"r" = (2/3[1 - (2/3)^"n"])/(1 - 2/3)`
∴ `sum_("r" = 1)^"n" (2/3)^"r" = 2[1 - (2/3)^"n"]`
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
The fractional value of 2.357 is
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For the G.P. if r = − 3 and t6 = 1701, find a.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. If t4 = 16, t9 = 512, find S10
Find : `sum_("n" = 1)^oo 0.4^"n"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1