Advertisements
Advertisements
Question
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
Options
(a) \[\frac{p - q}{q - r}\]
(b) \[\frac{q - r}{p - q}\]
(c) pqr
(d) none of these
Solution
(b) \[\frac{q - r}{p - q}\]
Let a be the first term and d be the common difference of the given A.P.
Then, we have:
\[p^{th} \text{ term }, a_p = a + \left( p - 1 \right)d\]
\[ q^{th} \text{ term }, a_q = a + \left( q - 1 \right)d\]
\[ r^{th} \text{ term }, a_r = a + \left( r - 1 \right)d\]
\[\text{ Now, according to the question the p^{th} , the q^{th} and the r^{th} terms are in G . P } . \]
\[ \therefore \left( a + \left( q - 1 \right)d \right)^2 = \left( a + \left( p - 1 \right)d \right) \times \left( a + \left( r - 1 \right)d \right)\]
\[ \Rightarrow a^2 + 2a \left( q - 1 \right)d + \left( \left( q - 1 \right)d \right)^2 = a^2 + ad\left( r - 1 + p - 1 \right) + \left( p - 1 \right) \left( r - 1 \right) d^2 \]
\[ \Rightarrow ad\left( 2q - 2 - r - p + 2 \right) + d^2 \left( q^2 - 2q + 1 - pr + p + r - 1 \right) = 0\]
\[ \Rightarrow a\left( 2q - r - p \right) + d\left( q^2 - 2q - pr + p + r \right) = 0 \left( \because d cannot be 0 \right)\]
\[ \Rightarrow a = - \frac{\left( q^2 - 2q - pr + p + r \right)d}{\left( 2q - r - p \right)}\]
\[ \therefore \text{ Common ratio }, r = \frac{a_q}{a_p}\]
\[ = \frac{a + \left( q - 1 \right)d}{a + \left( p - 1 \right)d}\]
\[ = \frac{\frac{\left( q^2 - 2q - pr + p + r \right)d}{\left( p + r - 2q \right)} + \left( q - 1 \right)d}{\frac{\left( q^2 - 2q - pr + p + r \right)d}{\left( p + r - 2q \right)} + \left( p - 1 \right)d}\]
\[ = \frac{q^2 - 2q - pr + p + r + pq + rq - 2 q^2 - p - r + 2q}{q^2 - 2q - pr + p + r + p^2 + pr - 2pq - p - r + 2q}\]
\[ = \frac{pq - pr - q^2 + qr}{p^2 + q^2 - 2pq}\]
\[ = \frac{p\left( q - r \right) - q\left( q - r \right)}{\left( p - q \right)^2}\]
\[ = \frac{\left( p - q \right)\left( q - r \right)}{\left( p - q \right)^2}\]
\[ = \frac{\left( q - r \right)}{\left( p - q \right)}\]
\[ \]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Evaluate `sum_(k=1)^11 (2+3^k )`
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
Write the product of n geometric means between two numbers a and b.
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. a = 2, r = `-2/3`, find S6
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`