Advertisements
Advertisements
Question
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Solution
a = 0.7 = `7/10`, r = `0.07/0.7 = 1/10 < 1`
Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1
= `(7/10[1 - (1/10)^"n"])/(1 - 1/10)`
= `7/9 (1 - 1/10^"n")`
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find the 4th term from the end of the G.P.
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
The fractional value of 2.357 is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.