Advertisements
Advertisements
प्रश्न
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
उत्तर
a = 0.7 = `7/10`, r = `0.07/0.7 = 1/10 < 1`
Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1
= `(7/10[1 - (1/10)^"n"])/(1 - 1/10)`
= `7/9 (1 - 1/10^"n")`
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
Find the geometric means of the following pairs of number:
−8 and −2
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
For the G.P. if a = `7/243`, r = 3 find t6.
Which term of the G.P. 5, 25, 125, 625, … is 510?
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The numbers x − 6, 2x and x2 are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. If t3 = 20 , t6 = 160 , find S7
Express the following recurring decimal as a rational number:
`0.bar(7)`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.