मराठी

If a Be One A.M. and P, Q Be Two G.M.'S Between Two Numbers, Then 2 a is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 

पर्याय

  • (a) \[\frac{p ^3 + q^3}{pq}\]

  • (b) \[\frac{p^3 - q^3}{pq}\] 

     
  • (c) \[\frac{p^2 + q^2}{2}\]

  • (d) \[\frac{pq}{2}\] 

MCQ

उत्तर

(a) \[\frac{p^3 + q^3}{pq}\] 

\[\text{ Let the two positive numbers be a and b } . \]
\[ \text{ a, A and b are in A . P }. \]
\[ \therefore 2A = a + b (i)\]
\[\text{ Also, a, p, q and b are in G . P } . \]
\[ \therefore r = \left( \frac{b}{a} \right)^\frac{1}{3} \]
\[\text{ Again, p = ar and } q = a r^2 . (ii)\]
\[\text{ Now }, 2A = a + b \left[ \text{ From } (i) \right]\]
\[ = a + a\left( \frac{b}{a} \right)\]
\[ = a + a \left( \left( \frac{b}{a} \right)^\frac{1}{3} \right)^3 \]
\[ = a + a r^3 \]
\[ = \frac{\left( ar \right)^2}{a r^2} + \frac{\left( a r^2 \right)^2}{ar}\]
\[ = \frac{p^2}{q} + \frac{q^2}{p} \left[ \text{ Using } (ii) \right]\]
\[ = \frac{p^3 + q^3}{pq}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.8 | Q 15 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Evaluate `sum_(k=1)^11 (2+3^k )`


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


Find the geometric means of the following pairs of number:

2 and 8


Find the geometric means of the following pairs of number:

−8 and −2


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


For the G.P. if a = `2/3`, t6 = 162, find r.


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×