Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
उत्तर
\[S_{11} = \sum\nolimits_{n = 1}^{11} \left( 2 + 3^n \right)\]
\[ \Rightarrow S_{11} = \sum\nolimits_{n = 1}^{11} 2 + \sum\nolimits_{n = 1}^{11} 3^n \]
\[ \Rightarrow S_{11} = 2 \times 11 + \left( 3 + 3^2 + 3^3 + . . . + 3^{11} \right)\]
\[ = 22 + 3\left( \frac{3^{11} - 1}{3 - 1} \right) \]
\[ = 22 + \left( \frac{177147 - 1}{2} \right)\]
\[ = 22 + 265719 \]
\[ = 265741\]
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
Find the geometric means of the following pairs of number:
−8 and −2
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.