Advertisements
Advertisements
प्रश्न
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
उत्तर
Let the first term of the geometric progression = a, common ratio = r and number of terms = 2n.
Sum of all terms = `("a"("r"^(2"n") - 1))/("r" - 1)`
Terms placed at odd places a, ar2, ar4,…. up to n terms
Their sum = a + ar2 + ar2 +…… up to n terms
= `("a"[("r"^2)^"n" - 1])/("r"^2 - 1) = ("a"("r"^(2"n") - 1 ))/("r"^2 - 1)`
Given:
Sum of 2n terms of a geometric series = 5 × [Sum of terms at odd places]
⇒ `("a"("r"^(2"n") - 1))/("r" - 1) = 5 xx ("a"[("r"^2)^"n" - 1 ])/("r"^2 - 1)`
or `("a"("r"^(2"n") - 1))/("r" - 1) = (5"a"("r"^(2"n") - 1)) /("r"^2 - 1)`
`1 = 5/("r" + 1)`
or r + 1 = 5
or r = 4
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational number whose decimal expansion is \[0 . 423\].
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., then prove that:
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
Find the geometric means of the following pairs of number:
−8 and −2
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.