मराठी

If A, B, C Are in G.P. and X, Y Are Am'S Between A, B and B,C Respectively, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If abc are in G.P. and xy are AM's between ab and b,c respectively, then 

पर्याय

  • (a) \[\frac{1}{x} + \frac{1}{y} = 2\] 

  • (b) \[\frac{1}{x} + \frac{1}{y} = \frac{1}{2}\] 

  • (c) \[\frac{1}{x} + \frac{1}{y} = \frac{2}{a}\]

  • (d) \[\frac{1}{x} + \frac{1}{y} = \frac{2}{b}\]

MCQ

उत्तर

(d) \[\frac{1}{x} + \frac{1}{y} = \frac{2}{b}\] 

\[\text{ a, b and c are in G . P } . \]
\[ \therefore b^2 = ac . . . . . . . . (i)\]
\[\text{ a, x and b are in A . P } . \]
\[ \therefore 2x = a + b . . . . . . . . (ii)\]
\[\text{ Also, b, y and c are in A . P } . \]
\[ \therefore 2y = b + c \]
\[ \Rightarrow 2y = b + \frac{b^2}{a} \left[ \text{ Using } (i) \right]\]
\[ \Rightarrow 2y = b + \frac{b^2}{\left( 2x - b \right)} \left[ \text{ Using } (ii) \right]\] 
\[ \Rightarrow 2y = \frac{b\left( 2x - b \right) + b^2}{\left( 2x - b \right)}\]
\[ \Rightarrow 2y = \frac{2bx - b^2 + b^2}{\left( 2x - b \right)}\]
\[ \Rightarrow 2y = \frac{2bx}{\left( 2x - b \right)}\]
\[ \Rightarrow y = \frac{bx}{\left( 2x - b \right)}\]
\[ \Rightarrow y\left( 2x - b \right) = bx\]
\[ \Rightarrow 2xy - by = bx\]
\[ \Rightarrow bx + by = 2xy\]
\[\text{ Dividing both the sides by xy }: \]
\[ \Rightarrow \frac{1}{y} + \frac{1}{x} = \frac{2}{b}\]
\[\]

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.8 | Q 14 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the rational number whose decimal expansion is \[0 . 423\].


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For a G.P. a = 2, r = `-2/3`, find S6


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×